Sunday, August 10, 2014

What is Big Data?


Big data is an all-encompassing term for any collection of data sets so large and complex that it becomes difficult to process using on-hand data management tools or traditional data processing applications.

The challenges include capture, curation, storage, search, sharing, transfer, analysis and visualization. The trend to larger data sets is due to the additional information derivable from analysis of a single large set of related data, as compared to separate smaller sets with the same total amount of data, allowing correlations to be found to "spot business trends, prevent diseases, combat crime and so on."


Scientists regularly encounter limitations due to large data sets in many areas, including meteorology, genomics, connectomics, complex physics simulations, and biological and environmental research. The limitations also affect Internet search, finance and business informatics. Data sets grow in size in part because they are increasingly being gathered by ubiquitous information-sensing mobile devices, aerial sensory technologies (remote sensing), software logs, cameras, microphones, radio-frequency identification (RFID) readers, and wireless sensor networks. The world's technological per-capita capacity to store information has roughly doubled every 40 months since the 1980s; as of 2012, every day 2.5 exabytes (2.5×1018) of data were created. The challenge for large enterprises is determining who should own big data initiatives that straddle the entire organization.

Big data is difficult to work with using most relational database management systems and desktop statistics and visualization packages, requiring instead "massively parallel software running on tens, hundreds, or even thousands of servers". What is considered "big data" varies depending on the capabilities of the organization managing the set, and on the capabilities of the applications that are traditionally used to process and analyze the data set in its domain. "For some organizations, facing hundreds of gigabytes of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration."

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process the data within a tolerable elapsed time. Big data sizes are a constantly moving target, as of 2012 ranging from a few dozen terabytes to many petabytes of data in a single data set.

In a 2001 research report and related lectures, META Group (now Gartner) analyst Doug Laney defined data growth challenges and opportunities as being three-dimensional, i.e. increasing volume (amount of data), velocity (speed of data in and out), and variety (range of data types and sources). Gartner, and now much of the industry, continue to use this "3Vs" model for describing big data. In 2012, Gartner updated its definition as follows: "Big data is high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization."Additionally, a new V "Veracity" is added by some organizations to describe it.

If Gartner’s definition (the 3Vs) is still widely used, the growing maturity of the concept fosters a more sound difference between big data and Business Intelligence, regarding data and their use:

Business Intelligence uses descriptive statistics with data with high information density to measure things, detect trends etc.;
Big data uses inductive statistics and concepts from nonlinear system identification to infer laws (regressions, nonlinear relationships, and causal effects) from large data sets to reveal relationships, dependencies and perform predictions of outcomes and behaviors.
Big data can also be defined as "Big data is a large volume unstructured data which can not be handled by standard database management systems like DBMS, RDBMS or ORDBMS".

Big science

The Large Hadron Collider experiments represent about 150 million sensors delivering data 40 million times per second. There are nearly 600 million collisions per second. After filtering and refraining from recording more than 99.999% of these streams, there are 100 collisions of interest per second.

As a result, only working with less than 0.001% of the sensor stream data, the data flow from all four LHC experiments represents 25 petabytes annual rate before replication (as of 2012). This becomes nearly 200 petabytes after replication.
If all sensor data were to be recorded in LHC, the data flow would be extremely hard to work with. The data flow would exceed 150 million petabytes annual rate, or nearly 500 exabytes per day, before replication. To put the number in perspective, this is equivalent to 500 quintillion (5×1020) bytes per day, almost 200 times higher than all the other sources combined in the world.
The Square Kilometre Array is a telescope which consists of millions of antennas and is expected to be operational by 2024. Collectively, these antennas are expected to gather 14 exabytes and store one petabyte per day. It is considered to be one of the most ambitious scientific projects ever undertaken.